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Oscillatory flow around disks and through orifices 
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Two examples of unsteady, axisymmetric, separated flows are studied: unbounded 
oscillatory flow around a disk and bounded oscillatory flow through a sharp-edged 
orifice. Calculations are made assuming that the flow is inviscid and that the shed 
vortex sheets can be represented by sequences of discrete vortex rings. Thesolid 
bodies (i.e. the disk or the orifice and bounding tube) are also represented by a dis- 
tribution of bound discrete vortex rings whose strengths are chosen to satisfy the 
Neumann or zero normal velocity boundary condition. 

The results of flow visualization experiments and, for the orifice, pressure drop 
measurements are also reported. In  general, the gross properties of the flows are 
predicted accurately. 

1. Introduction 
The modelling of two-dimensional free shear layers by discrete vortices h&s been 

used by many authors since it was proposed by Rosenhead (1931). Fink & Soh (1974) 
and Clements & Maul1 (1975) give extensive reviews of the applications of this model 
as well as discussions of its limitations. More recently it has been used by Evans & 
Bloor (1976) to study impulsive flow through a sharp-edged orifice; by Sarpkaya & 
Schoaff (1979) to study the wake behind an impulsively started circular cylinder; and 
by Graham (1980) to study the force on sharp-edged cylinders in oscillatory flow. 

The extension of this model to axisymmetric flows is obvious but not trivial. Among 
the problems which arise are: a much more complicated interaction between vortices; 
the possibility of vortex stretching; and the existence of the self-induced velocity of 
a vortex ring. Davies & Hardin (1974) used the discrete vortex method to calculate 
the initial behaviour of an impulsively started circular jet. 

Very few other axisymmetric calculations have been published. Calculations have 
been made to predict the flow in an axisymmetric piston cavity during a full cycle of a 
four-stroke engine which was compared with some results using flow visualization in 
water (Ashurst 1979). 

Flow visualization of vortex rings formed by oscillatory flow in and out of an open- 
ended tube have also been obtained by Knott & Mackley (1980) in their study of the 
energy losses of a wave-energy device. However, no specific vortex ring calculations 
have yet been carried out for this case. 

In  this paper we explore the theoretical basis of the axisymmetric, discrete vortex 
model. We then apply it; calculating first the unbounded Oscillatory flow around a 
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disk. This is the axisymmetric analogue of two-dimensional oscillatory flow around a 
flat plate; a problem which has received considerable attention because of its relevance 
to wave loading and other fluid-structural interactions (see, for example, Graham 
1980). In  order to check some of the predictions of our calculations, we performed flow 
visualization experiments with an oscillating disk. 

For our second application of the model, we calculate oscillatory flow through an 
orifice in a circular tube. This flow, being bounded, is fundamentally different from 
the external flows which have been studied using this model. 

Research on unsteady flows through constricted tubes has been stimulated by the 
physiological importance of these flows. Caro, Fitzgerald & Schroter (1971) and Fry 
(1973) have suggested that hydrodynamic factors may influence the genesis and 
subsequent development of atherosclerosis. This is a disease involving the develop- 
ment of fatty deposits in the artery wall. In  its advanced stages, these deposits cause 
a progressive occlusion of the artery and can strongly influence the flow of blood 
through the affected artery (Young 1979). 

A better understanding of the complex fluid mechanics involved could lead to 
better methods for the detection of arterial stenoses. Auscultation, the oldest and 
most common means of detection, relies upon the detection of sounds generated by 
the flow through the stenosis. These sounds are generated by both pressure fluctuations 
in the fluid and vibrations of the elastic arterial walls (see, for example, Tomm 1977). 

The prediction of the pressure drop across a stenosis has been the subject of several 
studies. Young & Tsai (1973a, b) developed an equation for the unsteady pressure 
drop which used coefficients which were determined from steady flow experiments. 
The predicted peak pressure drop was always found to be lower than that found 
experimentally. Clark (1976a, b) introduced an apparent friction factor which took 
into account changes in momentum flux due to the development of the boundary 
layer. The prediction of both the pressure drop and the pressure recovery away from 
the constriction were in good agreement with steady and oscillatory flow measure- 
ments. 

Mates et al. (1978) found that flow separation occurs in relatively mild constrictions 
and suggest that an appreciable portion of the pressure drop is a result of energy 
dissipation in the recirculation regions. They also observed that for severe stenoses 
the total pressure drop was primarily dependent on the minimum area and was 
relatively independent of the detailed geometry of the stenosis - a sharp-edged orifice 
and a long, smooth stenosis behaved similarly. Because of this observation and because 
the problem of separation from a smooth surface is generally unsolved, even for the 
simple case of steady flow, we have restricted the theoretical and experimental in- 
vestigations presented here to sharp-edged constrictions where separation can be 
confidently assumed to occur, and its position is fixed. 

2. Mathematical description of the model 
We assume initially that we are modelling flows at  very high Reynolds numbers. 

Later the consequences for more moderate Reynolds-number flows in pipes will be 
considered. Therefore, the flow fields we are considering generally contain Iarge-scale 
structures in which viscosity is relatively unimportant. The formation of these large- 
scale structures, however, depends upon the existence of free shear layers resulting 
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from flow separation. A common reason for flow separation is the presence in the 
boundaries of regions of high curvature relative to the local boundary-layer thickness. 
I n  these regions, the flow is unable to negotiate the curve and separates forming a free 
shear layer of thickness comparable to that of the boundary layer. Thus, the effects 
of viscosity are important in the formation of the large-scale structures but are con- 
fined to a small region close to the boundaries. 

In  the limit of infinite Reynolds number, we assume that a bound vortex sheet 
exists on the boundary and is shed at the point of separation as a free vortex sheet 
which is convected with the local velocity. In  this limit, the problem becomes an 
inviscid one which can be analysed using potential flow theory with the effects of 
viscosity being replaced by a Kutta-Joukowski condition at the point of separation. 
The problem can be divided into three parts: (a) the potential-flow solution, (b) the 
inviscid flow separation and (c) the evolution of the free vortex sheet. 

(a) Potential-$ow solution 
The governing equation for an inviscid flow is the Laplace equation 

V2# = 0, (1) 

(2) 

P(x ,  t )  = 0, (3) 

where # is the velocity potential, v = V#. The boundary condition is 

v . nl, = .F(x, t ) ,  

where S is the boundary of the flow defined by the equation 

n is the unit normal to S defined as positive on the wetted surface, and S ( x ,  t )  is a 
function which is determined by the imposed boundary conditions. For stationary 
boundaries without sources or sinks, S = 0. 

The pressure is given by the unsteady Bernoulli equation 

where I, is the pressure, p is the density which is assumed to be constant, and f ( t )  is 
an instantaneous constant throughout the flow. 

Since the problem is linear, we can express the velocity 

v = v o 3 + v b + v e )  ( 5 )  

where vm( t )  is the velocity imposed at infinity, vb(x, t )  is the irrotational disturbance 
velocity due to the presence of the boundaries, and V J X ,  t )  is the velocity due to the 
singularities in the flow field. If $b(x, t )  is the potential of the disturbance velocity, vb, 
then equation (1) becomes 

and the boundary condition, equation (2), becomes 
v 2 # b  = 0 (6) 

(7) V#b.nl, = .F-va..n~,-vv.n~, = Y(x, t ) .  

A boundary integral method has been used to solve equations (6) and (7). In  this 
method, singularities are distributed over the boundary and their strengths are 
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calculated so that the prescribed normal velocity boundary condition is satisfied. In  
a previous application of this method, Chaplin (1964) used a distribution of vortex 
rings to simulate the boundary in his study of a steady axisymmetric flow through a 
shrouded impulse disk. We have also found a distribution of vortex rings to be the 
most convenient in our calculations. 

Restricting our analysis, now and in the rest of this paper, to axisymmetric flows 
where x = (x, a) and v = (u, v), the boundary condition (7) becomes 

1 
y(x' ,  a', t )  [CFz + GFg] dl' = q x ,  a, t ) ,  

d s  

where y(x ,  a, t )  is the strength of the distributed vorticity. (C, G) is the velocity at 
(2, a) due to a unit vortex ring at (x', a'). This velocity can be obtained from Lamb's 
(1957) solution 

Q(m)),  (9) ( Wm) - (x - x')2 + (a- a')2 

1 (x - %')a+ a 2 -  a ' 2  
C ( x ,  a; x', a') = 

27r[(x-x')2+ (a+ a ' )2 ]8  

where X ( m )  and b(m)  are the complete elliptic integrals of the first and second kind 
with the argument 

I 

4aa' 
m =  (x - x')2 + (a + a' )Z * 

Equation (8) is a Fredholm equation of the first kind. An approximate solution can 
be obtained by approximating the boundary by a polygonal contour composed of N 
conical segments SS,. The integrand between successive midpoints of the segments is 
assumed to be constant and equa.1 to its value at  the junction. The result is a set of 
simultaneous equations 

N 

5 = 1  
x I', [v"(x$, a$; xj, q) cos/?,-C(x,, a$; x5, q)sinp,] = < (i = 1, 2, ..., N), (12) 

which is equivalent to approximating the continuous distribution of vorticity, y ,  by 
a set of bound vortex rings of strength 

rj = yjSsj. 
Equation (12) can be written in matrix form 

A r  = G, 
which has the solution 

r = A-'G. 

(14) 

(15) 

Note that the matrix A and hence A-l depends only upon the geometry of the 
boundary. 

The tangential velocity at  the boundary, vT = v.7, is given at the midpoints of 
each element by the equation 

N 

j=l 
*T6 = rj[G(x,, ai;xj, aj)sin/?i+C(x,:t, a,;xj, aj)cosp<I 

+ ( v , . T ) $ + ( V , . . e ) i + ~ y $  (i = 1 ,  2 , . . . ,  N ) .  (16) 
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The last term is the tangential velocity due to the local surface distribution of vor- 
ticity. In  matrix notation and using equation (15) 

V,= BA-lG+V,+V,+V. (17) 

Again, the matrix BA-l depends only upon the geometry of the boundary. 
The accuracy of this method depends upon the number and distribution of the 

elements (Smith & Pierce 1958; Hess & Smith 1966). Particular care must be taken 
around geometrical singularities in the boundaries. As d, the distance along the 
boundary from the singularity, decreases, A, the size of the element, should decrease. 
Using results from the next section, it can be seen that A cc dl/A, where h = 2 - S/m 
and S is the internal angle of the singularity. 

This method for calculating the potential flow is simpler but less accurate for a 
given number of elements than those published by Chaplin (1964), Smith & Pierce 
(1958) and Hess & Smith ( 1966). In order to check if the loss of accuracy was accept- 
able, we recalculated all of the axisymmetric examples given in these papers and 
concluded that the slight loss of accuracy was more than compensated for by the 
relative simplicity of our method. 

(b )  Inviscid vortex shedding 
Prandtl (1  924) proposed a similarity law for the vortex shed from the apex of semi- 
infinite wedge in two-dimensional starting flow. Anton (1939) and Wedermeyer (1964) 
derived a solution for the case of zero wedge angle. In  the axisymmetric caae in which 
the vortex sheet rolls up to form a vortex ring, no such similarity law has been found 
(Didden 1979). However, Saffman (1978) has proposed that the two-dimensional law 
should be valid for short times; that is, for times small enough so that the charac- 
teristic length scale of the shedding is small compared to the radius of the singularity. 
He found reasonable agreement with experiments in which the ejection time waa 
short. 

We assume that the vortex shedding in our axisymmetric problem is governed by 
the flow characteristics near to the geometrical singularity in the boundary. We 
further assume that the region of influence is small compared to the radius of the 
singularity so that we can take the shedding to be locally two-dimensional. Graham 
(1977) has discussed two-dimensional vortex shedding from an infinite sharp edge in 
detail and this section follows his results closely. 

If the flow past an edge of internal angle S does not separate, then in the vicinity of 
the edge the flow can be described by the complex velocity 

where U and V are real constants describing the symmetrical and aaymmetrical 
(relative to the median plane of the wedge) parts of the flow and h = 2 -S/n. The 
part of the flow due to the asymmetric velocity, V, is singular at the edge and gives 
rise to the flow separation. 

Giesing (1969) has derived a relationship between V and the properties of the shed 
vortex sheet. Briefly, he assumes that the element of vortex sheet shed in a small 
time interval 6t is straight, of length SS and of uniform strength y. The wedge is 

I 0  P L Y  102 
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transformed into a plane surface by the transformation x = cA and the Kutta- 
Joukowski condition of finite velocity at  &' = 0 is applied. This yields a relationship 
between V and 68 

He also shows that when 6 $; 0, the free vortex sheet must leave the edge tangentially 
to the wetted surface (i.e. at an angle - is) with the convection velocity 

88 
6t 
- = &y. 

This means that a stagnation point must exist on the unwetted side of the edge. 
Combining equations (19) and (20), we see that 

8s = CL,, (21) 

where C depends only upon the wedge angle, 8, 

and L, is a characteristic length associated with the asymmetric part of the local flow 

L, = [ V&]Al(2,3-1). (23) 

The total circulation, I? = y68, of the element shed in time st is byequation (21) and 
(23) 

(24) 
2C2L2, r=- 

8t * 

When the integral method of the previous section is used, the asymmetric edge 
velocity, V ,  can be expressed in terms of the velocities QW and &, at the midpoints of 
the conical segments on the wetted and unwetted side of the edge, 

where A, is the length of the edge element. 
For the special case, 6 = 0, it is obvious that there does not have to be a stagnation 

point on the unwetted surface of the wedge. Thus, the convective velocity at the edge 
depends upon U, the symmetrical velocity component. However, experimental 
(Fage & Johansen 1928) and computed (Graham 1977) results indicate that the 
velocity on the unwetted side of a flat edge is generally small. That is, U is only 
slightly greater than $7 and consequently it can be assumed empirically that the 
convective velocity at  the edge is also equal to &y for 6 = 0. 

Finally, when considering the motion of a fluid starting from rest special care must 
be taken in the representation of the first element of vortex sheet which is shed. This 
first element, unlike succeeding elements, will roll up into a tight spiral. Brown & 
Michael (1955) suggested that this element could be represented by a vortex located 
at the centre of the growing spiral joined to the edge by a cut representing the sheet. 
Thus, a concentrated vortex is first shed followed by continuous shedding of vortex 
elements representing the subsequent vortex sheet, This representation is analogous 
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to that used by Mangler & Smith (1956) to  represent vortex sheets above slender 
wings. 

Usinn the above-described transformation and the Kutta-Joukowski condition in - u  

the transformed plane, the position 8, and strength r0 of the first shed vortex can be 
calculated. For an attached flow with U = 0 and V = ?to 

2, = KAK2A-U L, eio, (26) 

where 

and 0 = -Acos-l(#h&). (4-h)4(h- 1)(2A- 1)  
2A2(3bh j-h+ 1) 

K =  

The total circulation of the first element calculated by equation (27) is similar to 
that which would be calculated by equation (24). However, the shedding angle 0 of 
the first element can be dramatically different from the value -48 for succeeding 
elements. In the extreme case of 6 = 0, the first vortex is shed at  an angle of -in 
(measured relative to the plane of the edge) while succeeding vortices are shed at an 
angle of 0. We found that the proper placement of the initial vortex could be important 
when calculating the detailed nature of a starting flow. 

( c )  Vortex sheet evolution 
The final part of our problem is to describe the evolution of the vortex sheet once it 
has been shed. We have used the ‘point vortex’ representation which has been 
studied extensively since it was proposed by Rosenhead (1931) (see reviews by Fink & 
Soh 1974 and Clements & Maul1 1975). Moore (1974) has discussed the difficulties and 
inherent limitations of this method and has succeeded in describing the evolution of 
an elliptically loaded vortex sheet. Clements (1973) and Sarpkaya (1975) have used 
the point vortex model to describe the two-dimensional free shear layer shed from 
sharp-edged bodies. Davies & Hardin (1974) used the method to model an axi- 
symmetric starting jet. They found qualitative agreement between their calculations 
and experiments. 

In  our model, the vortex sheet is represented by a number of vortex rings whose 
initial strengths and positions are determined by the shedding discussed in the pre- 
vious section. Each vortex ring has an infinitesimally small core with a finite cir- 
culation which is equal to the circulation of the vortex sheet element shed in the 
time &. That is, the strength of the nth vortex I?, = yn6Sn which, using equation (20), 
can be written 

8s: r, = 2-. 
&n 

(29) 

The initial position of the nth vortex is taken as the midpoint of the element of vortex 
sheet shed during the interval st,. As pointed out by Graham (1977), this initial 
location leads to a small violation of the Kuttdoukowski condition, but to a more 
accurate description of the convection of the element. 

There are basic differences between the behaviour of a two-dimensional and an axi- 
symmetric vortex sheet. Fink & Soh (1974) have shown that the point vortex 
representation of a two-dimensional vortex sheet produces a logarithmic error in the 

10-2 
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self-induced velocity field unless the point vortex remains in the centre of the element 
which it represents. Sarpkaya (1975) claims that this error is relatively unimportant 
compared to other errors inherent in the method. 

For an axisymmetric vortex sheet, there is an additional contribution to the self- 
induced velocity arising from the circular symmetry. We analyse this contribution by 
calculating the self-induced velocity at the midpoint @,a) of a short, straight conical 
section of an axisymmetric vortex sheet of uniform strength 7 and length 25, 

u*(5, a) = - 7 s” q i f ,  a; x’, cr‘)dS’, 
4n -so 

V*(Z, a) = - 7 s” @(if, F; z’, u’)dS’, 
4n - s o  

where Q and v“ are defined in equations (9) and (10). 
These integrals are improper for (x’, d) = (if, a). In  order to overcome this difficulty, 

we define the variables? = S / F  and a = tan-l((a’ -a)/@’ -Z)}, substitute them into 
equations (9) and (10) and obtain series expansions for the velocities for q + O .  Sub- 
stituting these series into equations (30) and (31) and integrating term by term, we 
obtain the expansions for the self-induced velocity at the midpoint, 

+ [2sin2a+&(9-23sin2a+6sin4a)qt] +O(qi) ,  (32) 1 

Wa note that, if a vortex sheet of defined strength y(S) is represented by a sequence of 
conical elements of vortex sheet of locally uniform strength, the self-induced velocity 
of each element decreases as q,ln~,~, as the number of elements is increased, thus 
decreasing 7,. 

In  the point-vortex method we approximate each element of vortex sheet by a 
vortex ring with an infinitesimally small core. Theoretically, the self-induced velocity 
of a vortex ring of constant circulation increases weakly to infinity &B its core radius 
decreases to zero. However, these vortex rings are being used to represent small 
elements of vortex sheet whose self-induced velocity decreases to zero as the element 
length goes to zero. In practice there is a small self-induced velocity for a finite-length 
element which we neglect to leading order in the vortex-ring representation. It is best 
to consider our vortices not as physical vortex rings but as a discrete numerical 
representation of a continuous vorticity distribution. 

Practically, the above analysis provides a strong condition on the length of the 
shed element SS and hence the time step St. We require that the neglected self-induced 
velocity of the element be small compared to the characteristic convection velocity, 
U*, of the element at  the shedding edge L,/St. Taking the leading-order term from 
equations (32) and (33) for a = an, we obtain the ratio 
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This requires that (L@) In [L&] be small whereas the assumption in subsection (b) 
that the shedding was locally two-dimensional required only that LV/@ be small. 

As discussed in the previous section, the first vortex which is shed must be treated 
differently from succeeding vortices because it represents a rolled-up element of 
vortex sheet rather than a short element of essentially straight vortex sheet. If we 
assume that the inner part of the vortex sheet represented by the first vortex is 
described by a Kaden-type spiral, then we can obtain an estimate for the inner core 
radius (Saffman 1978) 

The self-induced velocity U,* of a vortex ring of radius a. and core radius a is given 
by Kelvin’s formula (Lamb 1957) which yields, using equations (28) and (36) with 
b = 0. 

Again we see that neglecting the self-induced velocity of this vortex introduces an 
error of order (Lv/ao) In [Lv/a,]. 

We conclude this section with a discussion of the amalgamation of vortices. Moore 
(1974) has pointed out that in the calculation of the rolling up of a vortex sheet the 
representation of the inner core by a, single vortex reduces numerical disturbances. 
This representation has already been used in our modelling of the first element of the 
vortex sheet. Graham (1977) has suggested that the continuing two-dimensional 
rolling-up process could also be modelled by successively amalgamating the vortices 
representing the core. If two vortices do amalgamate, the strength and position of the 
resultant vortex can be determined by conservation of the total circulation and the 
total impulse (Lamb 1967). 

In the case of axisymmetric flow, however, such a representation of the rolling-up 
process may not be appropriate, unless a proper calculation of the self-induced 
velocity of the resultant vortex ring can be obtained. Such a calculation haa not been 
attempted. Instead, we assume that the core of the resultant vortex is circular, that 
the vorticity is uniformly distributed in it, and that the core volume is conserved. The 
amalgamation process is applied only when the rolling up of the vortex sheet is a 
dominant feature of the flow. The errors involved in this process are not easily 
evaluated and this raises doubts about its validity. 

The validity of the amalgamation process becomes even more doubtful when it is 
applied to clusters of vortices. Several authors (for example, Sarpkaya 1975 and 
Clements 1973) have used it to reduce the number of discrete vortices in their two- 
dimensional calculations. However, for axisymmetric flows, the self-induced velocity 
depends strongly on the shape of the cluster and the distribution of vorticity in it. 
Therefore, general amalgamation should be used only when isolated and concentrated 
clusters are present and only far-field interactions are important. 
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3. Calculations and results 
(a) Oscillating diskJEow 

The method was used to calculate the external flow around a plane disk of radius R 
which starts oscillating normal to its plane with velocity B = Psin2nt, where 
t = t*/T is the time non-dimensionalized by the period of oscillation T. The inviscid 
problem depends only upon the Keulegan-Carpenter number K = pT/R. The real 
problem, however, will also depend upon the kinematic viscosity v and is charac- 
terized by an additional dimensionless group; either theReynoldsnumber Re = 2VR/v 
or the frequency parameter a = R(Bn/vt)#. 

The choice of the time step to be used in the calculations is not straightforward. 
The analysis leading to equation (34) provides an upper bound on the distance between 
vortices, and thus the time step for an accurate representation of the self-induced 
velocity of the vortex sheet. Another important consideration is the accuracy with 
which the convection of the vortices is described. A smaller time step or, equivalently, 
a higher-order integration procedure increases this accuracy. Balanced against this is 
the time of computation, which increases as the square of the total number of vortices. 

In  order to determine a suitable time step, we carried out a number of identical 
calculations for different time steps. In one series the rolling up of a vortex formed by 
an impulsively started uniform flow was calculated. The results were evaluated 
qualitatively by observing how smoothly the vortex sheet was represented. In 
another series of tests the force on the disk in sinusoidal flows was calculated (as 
described below) for different time steps. Both the peak force and the phase of the 
results were compared. Surprisingly, the relatively large time step 6t = 0.05 gave 
smooth results which were within a few per cent of the results for the smaller time 
steps. This time step was chosen for the bulk of the calculations. In  all of the calcula- 
tions, the disk was simulated by 40 annular elements. 

Figure 1 shows results of the calculation for K = 3.5. A line joining two vortex 
rings indicates that the distance between the two sequential vortices has remained 
less than four times the characteristic shedding length. This waa found empirically 
to be a good indication that that part of the vortex sheet retained an identifiable 
structure. 

Also shown in figure 1 are the results of an experiment performed to check these 
calculations. A disk of 4 cm radius and 0.16 cm thick was fixed to the end of a long 
rod about 0.3 cm radius and oscillated sinusoidally in the centre of a circular tank, 
50 cm diameter by 80 crn. The tank was filled with a saline solution in which neutrally 
buoyant polystyrene beads were suspended. The beads were illuminated by two 
collimated slit lamps (about 2 mm wide) which illuminated a plane containing the 
axis of symmetry normal to the camera. Particle tracks were obtained by taking 
photographs of relatively long exposure (A s). 

In  comparing calculations and experiments, it must be remembered that the 
experimental photographs show particle tracks while the theoretical results show the 
instantaneous distribution of vorticity, so that they cannot be compared directly. 
However, the point vortices also serve as fluid markers and the experimental results 
do give a qualitative indication of the location of the primary vorticity. In this 
qualitative sense, the results agree quite well. 

Calculations and experiments were carried out for oscillations with K - O( 1). In 
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. .  . -  

FIGURE I .  Comparison of theoretical results with flow visualization experiments for an oscillating 
disc starting from rest. K = 3.5, Re = 11 200, at = 0.0525. 9 is the velocity at infinity. 
(4 t = 4 9  (b)  4, (4 P I  (4 1, (4 QI (f) % (9) 2. 
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FIQTJEE 2. Comparison of vortex shedding from an oscillating disc (as in Fig. 1) without (left- 
hand side) and with (right-hand side) amalgamation into core vortices. (a) t = f ,  (a) 2, (c) 2. 
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this range, the displacement of particles in the undisturbed flow is comparable to the 
scale of the body. It is, therefore, impossible for the large-scale rolled-up vortices to 
move far from the edge of the body from which they are shed except by their self- 
induced velocity and, more importantly, by the induced velocity field of the other such 
vortices. 

One feature of the theoretical predictions which was subsequently observed in the 
experiments is the formation of vortex pairs and their unidirectional convection away 
from the disk. The vorticity shed during the fist half-cycle tends to roll up into a single 
vortex ring. As the free stream slows down, the flow at the edge of the disk reverses 
and a second vortex sheet of opposite sign starts and continues to be shed during the 
second half of the cycle. Meanwhile, the first vortex is convected around the disk by 
both its self-induced velocity and by the reversed free stream. This vortex interacts 
with part of the second vortex sheet to form a vortex pair which moves away from 
the disk. The residual of the second vortex sheet is neither as strong nor as organized 
as the first vortex and so that when the flow again reverses at the start of the second 
cycle it does not interact very strongly with the third vortex. This third vortex sheet 
develops into an organized vortex ring very much like the first one and the process iS 
repeated in succeeding cycles. 

Behaviour similar to that predicted by the calculations was observed in the experi- 
ments. An asymmetric wake whose direction depended only on the starting direction 
of the flow was certainly established and seemed to be quite stable. The flow remained 
axisymmetric up to a distance of about one diameter from the disk. Because of 
diffusion and possibly instabilities of the vortices it was difficult to follow their 
motion at greater distances. Also, because the tank wm relatively small, a secondary 
motion was rapidly established which also obscured the long-term motion of the 
vorticity . 

The pattern of flow around the oscillating disk is closer to that observed for a 
single, two-dimensional edge (Graham 1980) than to that of a two-dimensional body 
with two edges (Singh 1979). I n  the latter case the vorticity from one edge tends to 
migrate around the body to join with the vortex of the same sign growing on the 
opposite edge. This process appears to revolve around the body with the vortex pairs 
convecting away from the edges at an angle of about 45'. Because of the axisymmetry 
of the disk flow, this cannot happen. 

Figure 2 shows the comparison between two calculations. They are for the same case 
and the same relatively large time step, 6t = 0.0875. On the left, the vortex rings have 
not been amalgamated; on the right, an amalgamation procedure has been used. In  
general, the gross features of the flow, such as the predicted centres of circulation, are 
similar in both cases. However, amalgamation does seem to  obliterate the finer 
features of the flow and is, therefore, less satisfactory. 

Once the vorticity and hence the velocity distribution has been calculated, equation 
(4) can be used to calculate the pressure field. The unsteady axial force acting on the 
disk is 

F( t )  = p ( S ,  t ) d S ,  (40) 
IS 

where S represent the entire surface of the disk. It is convenient to consider this 
rinsteady force as arising from two contributions; one associated with the inertial 
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CF V 

FIGURE 3. The vortex force coefficient for a disk in oscillatory flow Starting from rest. 

force occurring for attached flow around the disk and the other from the shedding of 
vorticity. We therefore write (Graham 1980) 

F(t)  = trip PR3CJf0 + #np paR2CFv(t); (41) 

C,, is the attached flow inertia coefficient based on a sphere of equal radius and hm 
a value of 0.637 and C,, is the vortex force coefficient, non-dimensionalized by the 
area of the disk. 

Figure 3 shows a plot CFV(t) calculated for the first Lf cycles starting from rest, for 
different values of K. The amplitude decreases with increasing K and the zero crossing 
points are remarkably constant up to a value of K of about 3. The peak amplitude of 
the first half-cycle is low because during this period only one vortex has been shed. 
After this the peak amplitudes remain fairly constant. 

Equation (41) can be written in the form of Morison’s equation 

where 

and 

(42) 

(43) 

For very small values of K, the vortex shedding close to the disk should be similar to 
that for a single plane edge. For this case we expect (Graham 1980) that C, = A R 4  
and C,,,-CMo = BK%, where A and B are fixed coefficients. Figure 4 shows the 
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FIavRE 4. The variation of drag and inertia coefficients with Keulegan-Carpenter number for a 

disk and an isolated two-dimensional edge. 

calculated values of C, and (CBg-C~lo)K- l  together with the values for a single 
edge. We see that the results for the disk follow the K-4 behaviour predicted for a 
single edge up to a value of K of about 3; above this value they diverge rapidly. 

(b)  Oscillating ori$ce jlow 
For the second application of our point-vortex calculation procedure we chose a flow 
which is similar in many ways to those which stimulated this research; internal 
oscillatory flow through a circular pipe with a flat plate orifice in the middle. An onset 
flow 'v = f sin 2dlT was imposed, The pipe of radius R and orifice of radius ro were 
simulated by 80 annular elements distributed over a length of 12 pipe radii on either 
side of the orifice. The governing parameters for the calculation are the Keulegan- 
Carpenter number K = p T / R  and a parameter describing the relative size of the 
orifice. Following clinical medical practice, the orifice size is expressed by the con- 
striction ratio; i.e. the fraction of pipe area blocked by the orifice, c = 1 - (T, , /R)~.  I n  
this case the theory has been developed for infinite Reynolds number. Viscosity has 
the additional effect in internal flows of influencing the incident flow profiles. In 
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FIGURE 6. Computed vortex shedding for an oscillatory flow starting from rest through a 70  yo 
constricted orifice plate in a pipe. K = 6.0, 6t = 0.039. Results are shown at every # cycle. 
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FIGURE 6. Flow visualization experiments for an oscillatory flow started from rest through a 
7 0  yo constricted orifice plate in a pipe. K = 6.0, Re = 485. Results are shown at every & oyclo. 
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FIGURE 7. Computed (A- - -A) and measured (-) pressure difference coefficienta across a 
70% Constricted orifice plate in oscillatory flow started from rest. K = 8.0, Re = 485. 

purely oscillatory flow the thickness of the Stokes layer or the pipe walls scales as 
(vT)*. With significant mean flow, the thickness of the affected layer will also depend 
upon the entry length of the pipe. In  either case, if the boundary-layer thickness is 
significant, the calculations presented here for a flat incident flow profile will not 

Calculations were carried out for a number of cases for which flow visualization and 
pressure drop measurements were available (Djilali 1978). Figure 5 shows the results 
of numerical calculations for K = 6.0 and c = 70% and the same time step as was 
used in the disk calculations, 6t = 0.05. The strength of each vortex ring varies, of 
course, depending upon the conditions when it was originally shed. But each vortex 
does serve as a fluid marker. 

Figure 6 shows the results of a flow visualization experiment, using the hydrogen 
bubble technique for the same conditions as figure 5 in a pipe of 25 mm diameter. 
The period of oscillation in the experiment T waa 4 s, which means that the Reynolds 
number based on pipe diameter Re = 486 and the thickness of the Stokes layers - 2 mm. Again the theoretical results cannot be compared directly with the experi- 
mental results which, in this case, record the convection of streak tracks. However, 
the location of the major centres of circulation can be estimated from the experimental 
results and they correspond well with the theoretical predictions. 

The primary difference between orifice and disk flow is that the self-induced velocity 
of the vortex rings, formed by the rolling up of the vortex sheet shed by the orifice, 
convects them away from the orifice. This effect is opposed by the ‘images’ in the 
bounding pipe walls, and therefore the ratio of the radius of the vortex to that of the 
pipe is important. As a result we see that very little of the vorticity generated during 
each half-cycle is conducted back through the orifice particularly in large blockage 
ratios. Most of it remains on the side of the orifice where it waa generated. In  the 
experiments it is dissipated by diffusion. In  the calculations it does not dissipate but 
does disperse due to interactions with other vortices and with the wall. In our calcu- 
lations this dispersion led to strong interactions with the bound vortices representing 
the walls and as the free vortices approached the end of the simulated pipe instabilities 
developed. 

Another difference between orifice and disk flow is how the flow in the neighbour- 

apply. 
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FIQUBE 8. Computed and meesured peek pressure difference coeflicients ‘amoss orifice plates 
with various constriction ratios. Experimental: 0, K = 2-47; 0, 4.95; A, 7.42; V, 9.89. 
Theoretical: +, K = 2.47; @, 4-72; A, 7.42. 

hood of the edge is affected by the evolving vortex sheet. In  both cases the velocity 
at the edge induced by the vortex sheet is opposite to the free-stream velocity. As a 
result, the flow at the edge and hence the shedding tends to reverse before the onset 
flow reverses. In  the orifice, however, this effect is counteracted by the self-induced 
velocity which acts with the incident velocity and the shedding reverses almost 
exactly in phase with the onset flow. 

The pressure distribution along the walls of the pipe can be calculated by using 
equation (4) on the streamline at the wall. Defining the pressure coefficient 

CP(8, t )  = [ P ( S ,  4 -P(W, t)1/bPV2, 

the pressure drop coefficient between two points, s1 and s2, is simply 

where s is the distance along the wall including the orifice and the last term is the 
contribution of the vortex sheet shed at the edge. Figure 7 shows the calculated and 
experimentally measured values of CAP when the pressure measuring points are 3 pipe 
diameters either side of the orifice and c = 70%, K = 6-0 and Re = 485. The asym- 
metry of the experimental results is due to a slight bevelling of the edge of the orifice. 
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This was easily demonstrated by reversing the orifice plate and indicates the sensi- 
tivity of separated flows to the detailed nature of the separating edge. The agreement 
between theory and experiment is satisfactory and confirms the power of the method 
to predict the global features of the flow. 

In agreement withotherworkers’observations (Young & Tsai 1973a, b; Clark 1976a, 
b) the experimental peak pressure-drop coefficient, eAP, was found to be relatively 
independent of c for c less than about 70 yo and then to increase very rapidly with c; 

was also found to be relatively independent of Re over the range tested 
(318 Q Re Q 1272) but did vary with K. These results are shown in figure 8 along 
with the theoretically predicted CAP. The agreement between theory and experiment 
is excellent until c = 90%. This disagreement at  c = 90% is not surprising, first 
because the flow was observed experimentally to be turbulent over most of the cycle 
and second because the assumptions leading to the use of the two-dimensional shed- 
ding theory and of negligible self-induced velocity are not valid for such large con- 
strictions. 

4. Conclusions 
The method of discrete vortices, previously used to calculate two-dimensional 

flows, has been extended to axisymmetric flows. It is a relatively f a t  method for 
calculating unsteady, high-R.eynolds-number separated flow. By comparing our 
numerical predictions with experimental results, we conclude that the method 
predicts the dominant features of the flow accurately. In  unbounded oscillatory flow 
around a disk, it correctly predicts the pairing and the unidirectional streamingof the 
shed vortex rings. In bounded oscillatory flow through an orifice, it correctly predicts 
the location of the vortices which are shed during each half-cycle and, more impor- 
tantly, it correctly predicts the magnitude of the pressure drop across the orifice. 
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